Elastic response of carbon nanotube forests to aerodynamic stresses.

نویسندگان

  • Ilenia Battiato
  • Prabhakar R Bandaru
  • Daniel M Tartakovsky
چکیده

The ability to determine static and (hydro)dynamic properties of carbon nanotubes (CNTs) is crucial for many applications. While their static properties (e.g., solubility and wettability) are fairly well understood, their mechanical responses (e.g., deflection under shear) to ambient fluid flow are to a large extent unknown. We analyze the elastic response of single-walled CNT forests, attached to the bottom wall of a channel, to the aerodynamic loading exerted by both laminar and turbulent flows. Our analysis yields analytical expressions for velocity distributions, the drag coefficient, and bending profiles of individual CNTs. This enables us to determine flexural rigidity of CNTs in wind-tunnel experiments. The model predictions agree with laboratory experiments for a large range of channel velocities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling Analysis of a Double-Walled Carbon Nanotube Embedded in an Elastic Medium Using the Energy Method

The axially compressed buckling of a double-walled carbon nanotabe surrounded by an elastic medium using the energy and the Rayleigh-Ritz methods is investigated in this paper. In this research, based on the elastic shell models at nano scale, the effects of the van der Waals forces between the inner and the outer tubes, the small scale and the surrounding elastic medium on the critical bucklin...

متن کامل

Nonlocal Dispersion Analysis of a Fluid – Conveying Thermo Elastic Armchair Single Walled Carbon Nanotube Under Moving Harmonic Excitation

In this work, the nonlocal elastic waves in a fluid conveying armchair thermo elastic single walled carbon nanotube under moving harmonic load is studied using Eringen nonlocal elasticity theory via Euler Bernoulli beam equation. The governing equations that contains partial differential equations for single walled carbon nanotube is derived by considering thermal and Lorenz magnetic force. The...

متن کامل

A Semi-analytical Solution for 3-D Dynamic Analysis of Thick Continuously Graded Carbon Nanotube-reinforced Annular Plates Resting on a Two-parameter Elastic Foundation

The The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of elastically supported continuously graded carbon nanotube-reinforced (CGCNTR) annular plates. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. An equivalent continuum model based on the Eshelby-M...

متن کامل

Wide Range Control of Microstructure and Mechanical Properties of Carbon Nanotube Forests: A Comparison Between Fixed and Floating Catalyst CVD Techniques

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Vertically aligned carbon nanotube (CNT) forests may be used as miniature springs, compliant thermal interfaces, and shock absorbers, and for these and other applications it is vital to understand how to engineer their mechanical properties. Herein is investigated how the diameter and packing density within CNT forests govern their deformation b...

متن کامل

Bending Analysis of Laminated Composite Sandwich Plates Reinforced with Carbon Nanotube Forests

In order to meet the ever-increasing demand for high-strength, lightweight aerospace structures, a new material is created via combination of three prior innovations: sandwich configurations, composites, and the addition of carbon nanotubes. A theoretical sandwich panel is created using facesheets of a novel woven microfibre composite reinforced by carbon nanotube forests, as created by Vinod P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 105 14  شماره 

صفحات  -

تاریخ انتشار 2010